Effect of Crushed *Eruca sativa* Seeds Supplementation to Quail Ration on Lipid Profile Before and After Sexual Maturity

Abdullah F. Abdul-Majeed
Sarmad Hashem Taha*

Department of Animal Production / College of Agriculture and Forestry/
University of Mosul

Email: abdullahfathi@yahoo.com sarmed.hashem89@gmail.com

ABSTRACT

The study aimed to evaluate the effect of crushed Rocket salad (*Eruca sativa*) seeds on serum lipid profile and risk index of males and females quail before and after sexual maturity. A total of two hundred forty unsexed quail (*Coturnix coturnix*) (7 days aged) were randomly distributed into 4 groups (60 birds/group, 5 replicates, 12 birds/replicate), the feed and water were allowed *ad libitum*, and the treatment continued till 77 days age, as follows:-

1**nd** group(control): birds were reared on standard ration (without *Eruca sativa* seeds).

2**nd** group: birds were reared on standard ration supplemented with 6 g / kg crushed *Eruca sativa* seeds from the age of 7 days till 42 days age.

3**rd** group: birds were reared on standard ration supplemented with 6 g / kg crushed *Eruca sativa* seeds from the age of 42 days till 77 days age.

4**th** group: birds were reared on standard ration supplemented with 6 g / kg crushed *Eruca sativa* seeds for the whole period of experiment (7 - 77 days).

The addition of crushed *Eruca sativa* seed don't change the level of blood glucose, but it improves serum lipid profile in males and females quail, especially when given in the early stage of growth before sexual maturity (*Eruca sativa* from 7days age), and there was a significant decrease (P≤0.05) in the level of cholesterol, triglycerides and VLDL-C compared with control.

Also the addition of *Eruca sativa* seeds in the ration enhanced and significantly increased (P ≤ 0.05) the level of HDL-C in males and females quail before sexual maturity (2**nd** and 4**th** groups), and there is no significant changes in the level of LDL-C compared with control, which reflected in improvement of risk index (LDL/HDL) especially when *Eruca sativa* seeds were added from 7 days age.

On the other hand, the addition of *Eruca sativa* seeds reduced the stress effects in males and females quail as represented by a significant decrease (P ≤ 0.05) in AST and ALT values as compared with the control group.

In conclusion, the addition of crushed *Eruca sativa* seeds improve the lipid profile and risk index, also reduce stress condition in males and females quail, especially when given in the growth stage and before sexual maturity.

Keyword: *Eruca sativa*, Rocket Salad, LDL, HDL, Quail.

Received: 27/8/2018, **Accepted**: 7/11/2018

Introduction

Rocket salad "*Eruca sativa" is one of the most commonly used plants in many countries of world, including the Mediterranean region, particularly in Iraq, the Levant and Egypt (Uğur *et al.*, 2010 ; Al-Eneezy, 2004), as it is of great importance for human and animal health as well as its various medicinal therapeutic properties,
according to the popular adage is used to increase sexual activity for both genders "Aphrodisiac", as it helps in increasing fertility and the production of sperm (Ansari and Ganaie, 2014).

Rocket salad or so-called "Arugula" it is used as leaves, seeds, extract or powder (Mossa et al., 1987). Arugula seeds and its leaves possess antioxidant activity (Abdul-Jalil, 2016), anti-lipid peroxidation (Abdel-Rahman et al., 2015), antioxidant vitamins and most of the vitamin B (Badee et al., 2003; Carr et al., 2004; Barillari et al., 2005).

Eruca sativa seeds contain a wide range of nutritional elements and in different proportions depending on the environment in which the plant grows (Pignone and Ngu, 1995). The seeds are characterized by volatile oils (Flanders and Abdulkarim, 1985; El-Gengaihi et al., 2004) and many nutrient elements, proteins, vitamins (A and C), carotenoids, mineral salts as well as containing glucosinolates (Bell and Wagstaff, 2014) and flavonoids vehicles (Barillari et al., 2005).

While the seeds oil mainly consists of fatty acids (Palmitic, Oleic, Linoleic, Linolenic and Eruccic acids). The _Eruca sativa_ seeds oil decrease serum cholesterol, triglycerides, LDL-C, VLDL-C and elevate the HDL-C level (El-Gengaihi et al., 2004; Mashi, 2017).

Materials and Methods

The study was conducted on a poultry farm of the Animal Production Department at the College of Agriculture and Forestry/University of Mosul. Two hundred forty unsexed males and females local quail (_Coturnix Coturnix_) were randomly distributed into four groups (60 birds/group, 5 replicates, 12 birds/replicate), the birds were reared in cages with dimensions (50 x 50 x 50 cm), the feed and water were allowed _ad libitum_ throughout the study, and with appropriate requirements of lighting, ventilation and temperature depending on age of birds. The treatment continued till the age 77 days as follows:

1st group (control): birds were reared on standard ration (without _Eruca sativa_ seeds).
2nd group: birds were reared on standard ration supplemented with 6 g/kg crushed _Eruca sativa_ seeds from the age of 7 days till 42 days age.
3rd group: birds were reared on standard ration supplemented with 6 g/kg crushed _Eruca sativa_ seeds from the age of 42 days till 77 days age.
4th group: birds were reared on standard ration supplemented with 6 g/kg crushed _Eruca sativa_ seeds for the whole period of experiment (7 - 77 days).

Eruca sativa seeds are bought from the local market, it crushed and mixed manually with ration before it was presented to the quail. The ration was formulated according to the standards of the National Research Council (Anonymous, 1994) which included: a starter ration of up to 35 days and a crude protein ratio of 22.4% and energy 2922.3 kcal/kg, and then replaced with a finisher ration until the age of 77 days, crude protein was 21.5% and energy 3013.3 kg/kg.

Five birds from each group were slaughtered at age 42 and 77 days, blood collected in tubes without anticoagulants and the serum isolated then preserved at (-20°C) until the biochemical tests were carried out, which included: estimation of the concentration of serum glucose, cholesterol, triglycerides, HDL-C, LDL-C, VLDL-C, risk index (LDL/HDL), AST, and ALT using Biosystems kits.
The experiment was designed as C.R.D and the collected data were analyzed by one-way analysis of variance using statistical programs (S.A.S) (Anonymous, 2000). Then Duncan's Multiple Range test (Duncan, 1955) was used to determine the differences between means ($P \leq 0.05$), according to the Steel and Tories (1960).

Results and Discussion

Tables (1 and 2) showed that addition of crushed *Eruca sativa* to the ration had no effect on blood glucose. It may be due to that the level of blood glucose in birds is high, when compared with its level in mammals, and the preservation of blood glucose level is necessary as a source of energy for the brain and other body's cells (Al-Daraji et al., 2008), as well as its role in sustaining muscle movements, heart activity, nerve impulse transmission, and ions (Al-Dalaly, 1994).

Tables (1 and 2) showed that the addition of crushed *Eruca sativa* led to an improvement in the lipid profile of males and females quail, especially when added from *Eruca sativa* seeds was given early in the growth stage and before sexual maturity 7 days old. The levels of cholesterol and triglycerides in the growth stage and whole period were relatively good and balanced, especially in males.

Table (1) reveals that the cholesterol level in males was decreased significantly at age 42 days in 4th group (*Eruca sativa* seeds from 7-77 days) as compared with control. Also, triglycerides were decreased significantly at 42 days age in 2nd and 4th groups, and at the age of 77 days in the 4th group compared to control.

Table (2) showed a significantly decreased in triglycerides of females in all treatment groups at age 77 days as compared with control.

The addition of *Eruca sativa* to the ration before sexual maturity improves serum HDL-C in males significantly ($P \leq 0.05$) in the 2nd and 4th groups at the age 42 and 77 days, as compared with control group (Table 1), and in females, at the age 77 days in both 2nd and 4th groups, as compared with the control group at level ($P \leq 0.05$)(Table 2).

There were no significant differences ($P \leq 0.05$) among the birds of all groups in LDL-C level in males and females quail at the age 42 and 77 days, as compared with control group (Tables 1 and 2).

Very low-density lipoproteins (VLDL-C) decreased significantly in the serum of males ($P \leq 0.05$) in the 2nd and 4th groups at the age of 42 and 77 days as compared with control group (Table 1). In females, the VLDL-C was significantly decreased in all treatments at the age 77 days as compared with the control group at level ($P \leq 0.05$) (Table 2).

Tables (1 and 2) showed that the risk index values was improved significantly by the addition of *Eruca sativa* before sexual maturity (7 days) in both of the 2nd and 4th groups in the males of the quail at the age 42, and at the age 77 days in females as compared with the control group at level ($P \leq 0.05$).

The results of the current study, research agreed with the findings of Razuki (2009) who used different levels of *Eruca sativa* (1, 2 and 3 g/kg feed) in the chickens ration in regard to cholesterol level.
Table (1): Effect of adding* crushed *Eruca sativa* seeds to the ration on blood glucose, serum total lipid profile and risk index in male quail at age 42 and 77 days.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Glucose mg/dl</th>
<th>Cholesterol mg/dl</th>
<th>Triglyceride mg/dl</th>
<th>HDL-C mg/dl</th>
<th>LDL-C mg/dl</th>
<th>VLDL-C mg/dl</th>
<th>Risk Index LDL / HDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
</tr>
<tr>
<td>1st / Control (Without Eruca sativa seeds)</td>
<td>306.60 ± 12.56 A</td>
<td>330.60 ± 8.76 A</td>
<td>308.20 ± 11.64 A</td>
<td>312.00 ± 23.37 A</td>
<td>128.60 ± 10.41 A</td>
<td>128.00 ± 7.14 A</td>
<td>46.60 ± 1.50 B</td>
</tr>
<tr>
<td>2nd / Growth stage (Eruca sativa seeds from 7-42 days)</td>
<td>308.20 ± 18.87 B</td>
<td>320.00 ± 12.39 A</td>
<td>276.60 ± 18.87 AB</td>
<td>331.00 ± 16.72 A</td>
<td>94.60 ± 12.70 B</td>
<td>108.60 ± 6.85 A</td>
<td>52.80 ± 1.77 AB</td>
</tr>
<tr>
<td>3rd / Production stage (Eruca sativa seeds from 42-77 days)</td>
<td>313.60 ± 1.69 AB</td>
<td>323.20 ± 7.13 A</td>
<td>278.60 ± 13.74 A</td>
<td>326.60 ± 6.13 AB</td>
<td>108.60 ± 9.91 AB</td>
<td>116.40 ± 5.73 AB</td>
<td>50.00 ± 2.12 AB</td>
</tr>
<tr>
<td>4th / Total stage (Eruca sativa seeds from 7-77 days)</td>
<td>329.00 ± 7.89 B</td>
<td>302.80 ± 12.10 A</td>
<td>260.00 ± 13.18 B</td>
<td>319.80 ± 14.80 A</td>
<td>89.20 ± 6.51 B</td>
<td>96.60 ± 6.86 B</td>
<td>52.60 ± 1.69 A</td>
</tr>
</tbody>
</table>

- Values are represent : Means ± Standard Error.
- Different letters in each column mean significant differences at (P≤0.05).
- *Adding 6 g/kg feed of crushed *Eruca sativa* seeds.
Table (2): Effect of adding* crushed *Eruca sativa* seeds to the ration on blood glucose, serum total lipid profile and risk index in female quail at age 42 and 77 days.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Glucose mg/dl</th>
<th>Cholesterol mg/dl</th>
<th>Triglyceride mg/dl</th>
<th>HDL-C mg/dl</th>
<th>LDL-C mg/dl</th>
<th>VLDL-C mg/dl</th>
<th>Risk Index LDL / HDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
</tr>
<tr>
<td>1st / Control (Without Eruca sativa seeds)</td>
<td>222.80 ± 16.11</td>
<td>292.80 ± 10.46</td>
<td>289.20 ± 11.00</td>
<td>340.40</td>
<td>714.60</td>
<td>678.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2nd / Growth stage (Eruca sativa seeds from 7-42 days)</td>
<td>247.00 ± 5.19</td>
<td>300.60 ± 7.12</td>
<td>320.40 ± 31.05</td>
<td>294.80</td>
<td>744.20</td>
<td>579.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>3rd / Production stage (Eruca sativa seeds from 42-77 days)</td>
<td>217.80 ± 6.34</td>
<td>308.40 ± 9.64</td>
<td>284.20 ± 21.16</td>
<td>312.60</td>
<td>717.80</td>
<td>575.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>4th / Total stage (Eruca sativa seeds from 7-77 days)</td>
<td>229.20 ± 10.85</td>
<td>314.40 ± 11.62</td>
<td>333.80 ± 26.11</td>
<td>305.20</td>
<td>750.20</td>
<td>564.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

- Values are represent: Means ± Standard Error.
- Different letters in each column mean significant differences at (P≤0.05).
- *Adding 6 g/kg feed of crushed *Eruca sativa* seeds.
El-Gengaihi et al., (2004) also explained that the hypocholesterolemic effect of *Eruca sativa* oil may be due to its unsaturated fatty acids (85%) or due to the effect of β-sitosterol (6.5%) which reduces the cholesterol absorption from the intestine so it decreases its level in the blood.

The hypocholesterolemic effect of *Eruca sativa* may be due to the it's flavonoids compounds (Badee et al., 2003).

The *Eruca sativa* seed constituents as the vitamin C and carotenoids they may have a role in improving the level of cholesterol and total lipid (Barillari et al., 2005), and the existence of vitamin C as demonstrated by Seyrek et al., (2004) reduce the concentration of triglyceride in the layer hens and the quail, Salah (2008) also confirmed that the addition of vitamin C resulted in a significant decrease in the concentration of triglycerides in male broiler breeders. These vitamins increase thyroid activity, Kuhn et al., (1993) reported that the thyroid gland is one of the most important glands in control of cholesterol and lipid metabolism.

Mashi (2017) also noted in a study conducted on male rabbits that the Aqueous extract of the *Eruca sativa* leaves (250 mg / kg orally for 30 days) causes a significant decrease (P≤0.05) in the triglyceride concentration, cholesterol, LDL-C, VLDL-C and elevation in HDL-C Compared with the control group, the hypolipidemic effect may be due to the enzyme 7-α-Hydroxylase that activated by vitamin C (a component of *Eruca sativa* leaves) that stimulates the conversion of serum cholesterol into bile acids, thus reducing serum cholesterol level as well as the ability of vitamin C to Inhibit HDL-C oxidation (Hillstrom et al., 2003), which was confirmed by Abdul-Rahman and Alkatan (2009) as they found a decrease in the concentration of triglycerides when they adds vitamin C to the laying hens.

El-Gengaihi et al., (2004) confirmed that *Eruca sativa* seeds oil improve the lipid profile after 4, 8 and 12 weeks in rats (0.5 g/day orally for 3 months).The reduction of serum cholesterol and total lipid may be due to the unsaturated fatty acids (85%) of *Eruca sativa* such as linoleic acid and linolenic acid (Thomas, 2002) or due to glucosinolate (a substance that inhibits lipid peroxidation) (Al-Doghachi et al., 2010).

The hypolipidemic effect of *Eruca sativa* may be due to some of its active components as saponins (Zamani et al., 2007) flavonoids, phenols, turbines and alkaloids (Asaduzzaman et al., 2010), as well as the glucosinolates (Wang et al., 1998).

Also, table (3) revealed that *Eruca sativa* treatment reduces the stress effects on both males and females quail at 42 days and 77 days age as represented in the reduction of AST and ALT values in treated groups, and the best effects were achieved when *Eruca sativa* treatment was continued for the whole period (7 – 77 days).

Results of the current study were in agreement with the study of Razooqi et al. (2014) in broiler, and with Al-Daraji and Razuki (2012) in layer breeders roosters, and with Razuki (2009) in laying chickens.

The reduction of AST and ALT values may return to activation of liver regeneration and functions due to its content of antioxidants as Kaempferol and quercetin and the glucosinolates (Jin et al., 2009 ; El-Fadaly et al., 2017), and also to its high content of sulphur, which activate the liver function and immune system.
(Alam et al., 2007). Also, Abdel-Rahman et al., (2015) showed that the *Eruca sativa* seed extract reduce lipid peroxidation and improve cellular antioxidants in rats.

In conclusion, the addition of crushed *Eruca sativa* seeds improve the lipid profile, and reduces stress condition and risk index in males and females quail, especially when given on the growth stage and before sexual maturity.

Table (3): Effect of adding* crushed *Eruca sativa* seeds to the ration on serum AST and ALT of males and females quail at age 42 and 77 days.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Male</th>
<th></th>
<th></th>
<th>Female</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AST U / L</td>
<td>ALT U / L</td>
<td>AST U / L</td>
<td>ALT U / L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
<td>42 days</td>
<td>77 days</td>
<td></td>
</tr>
</tbody>
</table>
| 1st / Control
(Without *Eruca sativa* seeds) | 157.51 ± 8.15
A | 243.92 ± 12.27
A | 53.44 ± 1.47
A | 17.35 ± 1.16
A | 219.93 ± 15.99
A | 217.12 ± 15.83
A | 50.63 ± 2.55
A | 82.48 ± 2.63
A |
| 2nd / Growth stage
(*Eruca sativa* seeds from 7-42 days) | 122.87 ± 3.27
B | 232.08 ± 18.39
AB | 25.36 ± 2.75
A | 15.92 ± 1.43
AB | 184.31 ± 12.14
AB | 200.08 ± 14.17
AB | 23.92 ± 3.03
B | 70.39 ± 2.30
B |
| 3rd / Production stage
(*Eruca sativa* seeds from 42-77 days) | 155.83 ± 7.28
A | 193.27 ± 18.90
AB | 49.17 ± 1.79
A | 14.79 ± 1.17
AB | 207.91 ± 20.07
A | 173.42 ± 10.43
C | 48.60 ± 4.45
A | 50.52 ± 3.38
C |
| 4th / Total stage
(*Eruca sativa* seeds from 7-77 days) | 119.16 ± 6.61
B | 178.81 ± 21.89
B | 24.41 ± 2.44
B | 12.40 ± 1.76
B | 147.21 ± 10.30
C | 137.28 ± 11.11
C | 25.83 ± 2.48
B | 40.47 ± 5.49
C |

- Values are represent: Means ± Standard Error.
- Different letters in each column mean significant differences at (P ≤ 0.05).
- *Adding 6 g/kg feed of crushed *Eruca sativa* seeds.

Table (3): Effect of adding* crushed *Eruca sativa* seeds to the ration on serum AST and ALT of males and females quail at age 42 and 77 days.

References:

Alam et al., 2007. Abdel-Rahman et al., 2015.

Email: sarmed.hashem89@gmail.com abdullahfathi@yahoo.com

Authors:

Seramed Hashem Thaeeb

Title:

"تأثير إضافة مجروش بذور الخرير إلى العلبة في صورة دهون دم طائرالسلوى قبل النضج الجنسي وبعده"

References

