ESTIMATION OF GENE ACTION, COMBINING ABILITY, HETEROSIS AND HERITABILITY IN MAIZE BY USING LINE × TESTER METHOD UNDER TWO OF NITROGEN LEVELS.

Mohammed Ali Hussain
College of Agriculture/Duhok University
dr mohammed1953@yahoo.com

ABSTRACT

The experiment was carried out at the field of College of Agriculture at the University of Duhok during the spring season of 2010. Eleven inbred lines of maize, had been selected, eight of them were used as a line (males), (ZP 204, ZP 301, ZP 595, ZP 670, ZP 430, ZP 505, un 44652, ZP 735) and the reminder used as testers (females), (ZP 197, ZP 607 and ZP 707) to estimate gene action, specific and general combining ability, heterosis and heritability for yield and its components under two nitrogen fertilizer levels (135 and 275 Kg N/ha). The results showed significant positive heterosis for most studied characters of hybrids under two nitrogen levels. The better hybrids for grain yield were (ZP 607 × ZP 505) and (ZP 707 × ZP 204). The line ZP 505 showed the heights positive GCA effect of grain yield. Heritability in broad sense was high for all studied characters while heritability in narrow sense was high for ear height under both nitrogen levels and number of rows / ear under value nitrogen level only. The additive variance was more than dominance variance for all characters except 100 grain weight (g) and ear length (cm) under (135 Kg N). The average degree of dominance was greater than one for all characters. The results of this study can enhance the use of promising inbred lines in a programme focused on developing hybrid that efficiently can take up and use nitrogen.

Keyword: Gene action, Heritability, Nitrogen levels

INTRODUCTION

The most commonly soil order that is dominance in Semmel region at Dohuk province is vertisols it’s a good natural fertility at the same time, it responds for adding chemical fertilizers. Therefore this soil is a good productivity, but the leaching process may causes deficiency of nutrient elements at root zone of field crops.

Nitrogen deficiency is one of the most important stresses affecting maize production (Lafltt and Banziger, 1995). The yield of maize require high addition chemical fertilizers, mainly nitrogen, thus a maize cultivar with genetic potential to use nitrogen efficiently could produce economically in poor soil with low levels of fertilizer application or high yields with better in puts of fertilizers due to its capacity to utilize nitrogen efficiently. (Pollmer et al.,1979 and Moll et al., 1982) the variation in the capacity of maize genotypes to take up nitrogen from soil and to utilize plant nitrogen for grain production has been widely reported efficient and in efficient maize hybrids respond differently to the nutrient supply in the soil (Eito et al., 2002). Genetic variation in response to nitrogen supply of inbred lines which response by many workers and it appears to be possible to develop hybrids to low nitrogen in soil (Balko and Russel, 1980). In most breeding programs one of main objective is to indentify inbred lines with productive potential and high combining
ability for hybrid production that expresses high heterotic levels for grain yield. Maize cultivars present different behavior when grown in low levels of nitrogen and show different nitrogen partition and biomass in the plant, especially in terms of nitrogen removed from the vegetative tissues (Ta and Wieland, 1992). Some morphological and physiological responses of maize when deficiency conditions are shown through plant height low efficiency in light interception increment in nitrogen mobilization to grain and reduction in nitrogen concentration in the plant (Muchow and Sinclair, 1994), with respect to genetic parameters to related nitrogen use efficiency, dominance effects had the great contribution to the observed genetic variance (Clark and Duncan., 1991). The genetic variation due to general combining ability was greatly related to nitrogen plant structure (productivity and dry matter), indicating that differences among crosses could be attributed to additive gene effects (Rizzi et al., 1993).

The objective of this study was to evaluate gene action, heterosis and heritability for yield and its components by using line × tester method under two levels of nitrogen.

MATERIAL AND METHODS

Eleven inbred lines of maize were selected, eight of them used as a line (males), (1) ZP 204 (2), ZP 30, (3) ZP 670, (4) ZP 430,(5) ZP 505, (6) un 44652, (7) ZP 735 and the reminder used as testers (female) (A) ZP 197, (B) ZP 607 and (C) ZP 707. The genotypes were sown during on April 2009, each genotype was planted in row with 4 m length, spacing 75 and 25 cm between and within rows, respectively. All recommended cultural practices and operation were done as recommended. Crossing among genotypes was done by line × tester according to Kemphorne methods (1957). The 24 hybrid, eight parental line and three testers were sown at the same field experiment during the spring season 2010. A Randomize Complete Block Design with three replications was applied, using (135) kg N/ha in the first experiment and (275) kg N/ha in the second experiment before anthesis stage. The data were recorded on plant height (cm), ear length (cm), 100 grain weight (g), no of rows/ear, ear length (cm) yield/plant (g) and estimated the nitrogen in grains. The data of each level analyzed individually using RCBD/design according to (Al-Rawi and Khalf – Allah, 1980). Duncan Multiple Range Test was used to compare the means of genotypes. The genetic analysis was based on Kemphthorn, (1957) to determined the variance of general and specific combining ability, additive, dominance and environmental variance, average degree of dominance, heritability in broad and narrow sense, expected genetic advance in absolute and percentage and heterosis estimated as a deviation of F1 from the mid parents values.

RESULTS AND DISCUSSION

Analysis of variance showed highly significant difference between genotypes under both nitrogen levels (table 1). The mean performance of parent testers and hybrids for all characters under both nitrogen levels are presented in table (2). The maximum plant height (157 cm) was recorded in parent 5 & hybrid (A×2) (164 cm) under (135) & 275 kg/ha, respectively. Highest ear height (88.3 cm) & hybrid (B × 4) (97.3 cm) under both nitrogen levels while the maximum 100 grain weight (g) was recorded in parent 5 (29.59 g) & hybrid (B×6) under level 273 kg/ha. The highest
No. of rows / ear obtained was (16.6) in parent 3 & hybrid (C×3) (20) under the both nitrogen level respectively. The result proved that parent 3 (19.33) & hybrid (C×3) gave the highest value for ear length under (135) & (275) kg/ha. The highest yield per plant in (g) was recorded for parent (3) (79.87 g), (126.12 g) and hybrid (B×6) (124.36 g), (157.44 g) under both nitrogen levels while the result indicated that the largest nitrogen grain reached (4.44 g) and hybrid (B×5) (3.11 g), (5.70 g) under (135) and (275) kgN/ha.

Estimates of general combining abilities effect for the parents and testers were presented in table (3). The genotype (tester C) was the best combiner for the no. of rows/ear and ear/length, parent 4 for the ear height and N in grain, parent 6 for 100 grain weight and grain yield/plant under both nitrogen levels, while other genotypes varied in these effect among nitrogen levels. It’s worthy; we can say that the tester C was the best combiner for the most characters under both nitrogen levels.

Table (4) showed that the specific combining abilities estimated the highest positive S.C.A effect for yield / plant was found in crosses (C×3) and (B×8) under N1 level while under N2 level the highest positive S.C.A. effect was found in crosses (C×3) and (A×1) in any way the S.C.A. effects for yield were larger under low N level, they consider that these effects were more important under low high than N a variability. For ear length the cross (A×1) gave high S.C.A effect for this trait under N1 and N2. Level while in No. of rows / ear the same cross gave high positive S.C.A under N1 level but under N2 level the cross (B×8) gave high positive S.C.A affect. For 100 grain weight, the cross (A×2) gave the highest positive S.C.A effect and N1 and N2 level for plant height and ear height (cm) the crosses (B×7) and (C×5) gave high positive S.C.A effect under N1 level whereas the crosses (A×2) and (C×8) gave high positive S.C.A effect under N2 level. For nitrogen in grain the cross (A×7) under N1 level gave positive S.C.A. effect while the cross (C×7) gave positive S.C.A. effect under N2 level. Similar results in maize have been reported by Al-Savie (2005), Derera et al. (2007), Mohammidi et al. (2008) and Rather et al. (2009).

Table, (5) shows of additive, dominance, and environment variance, average degree of dominance, heritability in broad and narrow sense and genetic advance for the studied characters under N1 level compare with N2 level except plant height, ear height and No. of rows/ear), and also the value of dominant gene effect in the genetic control of these characters. These results supported by the values of the average degree of dominance which are more than one for same characters. High heritability in narrow sense was reported for No. of rows / ear and ear height under N1 level and medium for all characters under N2 level, whereas low heritability in narrow sense was observed for nitrogen, in grain only. High heritability in broad sense was observed for all characters under N1 and N2 level except nitrogen in grain under N1 and N2 level. This result point out that high heritability values and a high percentage of genetic advance indicated scope for improvement of these characters by direct selection. The present finding thus supported the results of Deletic et al (2005), Hamed (2008), Cook and Hallader, (2008) and Najeeb et al. (2009).

Table (6) reveals the estimation of heterosis for the studied characters significantly positive heterosis in favorable direction over mid parent was observed for the most crosses under N1 and N2 level. The crosses (B×6), (B×8), (C×1), (C×6), (B×7) were superior significantly at level 1% of positive heterosis in desirable direction for grain yield / plant. For ear length the crosses (B×7) and (C×5) gave high
value of heterosis and reached 4.16 and 3.83 under N$_1$ level while the crosses (C×6) and (C×4) gave him value of heterosis which was 6.79 and 5.08, respectively under N$_2$ level. For the No. of rows / ear the cross (C×3) showed positive heterosis and the value of heterosis scored 4.66 and 5.00 under N$_1$ and N$_2$ level, respectively. The cross (A×2) obtained high positive heterosis in desirable direction for 100 grain weight and reached 5.94 and 11.11 under N$_1$ and N$_2$ level for plant height the most crosses was reported significantly positive heterosis at level 1%, the (B×2) and (C×6) were superior than the other crosses and the value reached 31.66 and 45.33, respectively, under N$_1$ and N$_2$ level, while the cross (C×5) and (C×1) were scored 29.5 and 29.50. For (N) in grain, the cross (B×5) was the best cross in desirable direction at level 1% and was 0.75 and 1.44. These results are in accordance with these, Chungji et al. (2006), Lee et al. (2006) and Dawod et al. (2009).

The productivity of inbred lines, testers and crosses were different and were dependent under nitrogen levels. The highest SCA estimated were detected for the cross, between line ZP – 301 and tester ZP – 301 and tester ZP – 607, some lines and hybrids identified in this study showed to be promising in GCA and SCA so that you put this inbred lines in plant breeding program.

Table (1) Mean squares for studied characters under two levels of nitrogen.

<table>
<thead>
<tr>
<th>SOV</th>
<th>df</th>
<th>Plant height (cm)</th>
<th>ear height (cm)</th>
<th>100 grain weight (g)</th>
<th>No. of rows / ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>2</td>
<td>N$_1$ 124.2</td>
<td>N$_1$ 77.06</td>
<td>N$_2$ 142.0</td>
<td>N$_2$ 102.63</td>
</tr>
<tr>
<td>Genotypes</td>
<td>34</td>
<td>514.8**</td>
<td>779.94*</td>
<td>456.1**</td>
<td>341.96*</td>
</tr>
<tr>
<td>Parents</td>
<td>10</td>
<td>564.2**</td>
<td>898.87*</td>
<td>556.3*</td>
<td>315.88*</td>
</tr>
<tr>
<td>Par. vs crosses</td>
<td>1</td>
<td>2400.9**</td>
<td>9375.41**</td>
<td>1222.3*</td>
<td>2777.80**</td>
</tr>
<tr>
<td>Crosses</td>
<td>23</td>
<td>411.3**</td>
<td>354.52*</td>
<td>379.2**</td>
<td>247.40*</td>
</tr>
<tr>
<td>Lines</td>
<td>7</td>
<td>543.7**</td>
<td>416.98*</td>
<td>731.8**</td>
<td>493.77**</td>
</tr>
<tr>
<td>Testers</td>
<td>2</td>
<td>886.7**</td>
<td>770.38*</td>
<td>57.9**</td>
<td>102.12**</td>
</tr>
<tr>
<td>LXT</td>
<td>14</td>
<td>277.3**</td>
<td>263.88*</td>
<td>248.7*</td>
<td>144.96*</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>5.57</td>
<td>7.05</td>
<td>6.2</td>
<td>4.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOV</th>
<th>Df</th>
<th>Ear length (cm)</th>
<th>Grain yield / plant (g)</th>
<th>N. in grain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>2</td>
<td>N$_1$ 0.35</td>
<td>N$_2$ 0.32</td>
<td>N$_1$ 6.35</td>
</tr>
<tr>
<td>Genotypes</td>
<td>34</td>
<td>12.70**</td>
<td>19.86**</td>
<td>4106.62**</td>
</tr>
<tr>
<td>Parents</td>
<td>10</td>
<td>8.63*</td>
<td>9.63*</td>
<td>2525.15*</td>
</tr>
<tr>
<td>Par. vs crosses</td>
<td>1</td>
<td>0.35</td>
<td>77.11**</td>
<td>8042.96*</td>
</tr>
<tr>
<td>Crosses</td>
<td>23</td>
<td>15.11**</td>
<td>23.00**</td>
<td>4623.07**</td>
</tr>
<tr>
<td>Lines</td>
<td>7</td>
<td>8.29**</td>
<td>7.70**</td>
<td>2942.50**</td>
</tr>
<tr>
<td>Testers</td>
<td>2</td>
<td>56.31**</td>
<td>110.62**</td>
<td>9008.21**</td>
</tr>
<tr>
<td>LXT</td>
<td>14</td>
<td>12.64**</td>
<td>18.13</td>
<td>4836.89**</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>0.51</td>
<td>1.25</td>
<td>15.54</td>
</tr>
<tr>
<td>Traits</td>
<td>Plant height (cm)</td>
<td>Ear height (cm)</td>
<td>100 grain weight (g)</td>
<td>No. of rows / ear</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>A</td>
<td>110.0 n</td>
<td>126.6 n</td>
<td>75.0 J</td>
<td>11.2 qr</td>
</tr>
<tr>
<td>B</td>
<td>110.0 n</td>
<td>111.6 n</td>
<td>74.6 gh</td>
<td>22.6 cd</td>
</tr>
<tr>
<td>C</td>
<td>110.0 n</td>
<td>149.0 de</td>
<td>67.6 klm</td>
<td>15.2 K</td>
</tr>
<tr>
<td>1</td>
<td>116.6 m</td>
<td>117.3 m pq</td>
<td>49.3 o</td>
<td>20.7 g</td>
</tr>
<tr>
<td>2</td>
<td>120.0 Lm</td>
<td>126.6 Lm</td>
<td>48.3 o</td>
<td>10.2 s</td>
</tr>
<tr>
<td>3</td>
<td>136.6 h-j</td>
<td>145.0 ef</td>
<td>77.6 fg</td>
<td>20.3 g</td>
</tr>
<tr>
<td>4</td>
<td>132.3 jkl</td>
<td>136.6 l</td>
<td>67.6 hj</td>
<td>12.7 p</td>
</tr>
<tr>
<td>5</td>
<td>157.0 b</td>
<td>163.3 m</td>
<td>57.0 no</td>
<td>13.6 n</td>
</tr>
<tr>
<td>6</td>
<td>116.0 m</td>
<td>118.3 pq</td>
<td>65.6 k-m</td>
<td>20.2 c</td>
</tr>
<tr>
<td>7</td>
<td>131.6 kl</td>
<td>157.3 i</td>
<td>88.3 bc</td>
<td>22.7 d</td>
</tr>
<tr>
<td>8</td>
<td>118.0 lm</td>
<td>128.3 cm</td>
<td>78.0 fg</td>
<td>14.4 F</td>
</tr>
<tr>
<td>A<1</td>
<td>138.0 g-i</td>
<td>150.0 d-e</td>
<td>76.6 h-j</td>
<td>17.1 e-f</td>
</tr>
<tr>
<td>A<2</td>
<td>152.6 cd</td>
<td>165.6 g-a</td>
<td>77.6 g</td>
<td>19.8 c</td>
</tr>
<tr>
<td>A<3</td>
<td>121.6 l</td>
<td>121.6 l</td>
<td>83.0 bc</td>
<td>10.2 r</td>
</tr>
<tr>
<td>A<4</td>
<td>123.0 no</td>
<td>131.6 J</td>
<td>87.3 ed</td>
<td>12.0 k-m</td>
</tr>
<tr>
<td>A<5</td>
<td>138.0 g-i</td>
<td>142.6 f-h</td>
<td>79.3 l-j</td>
<td>12.9 d</td>
</tr>
<tr>
<td>A<6</td>
<td>131.6 kl</td>
<td>138.3 3</td>
<td>81.0 e-h</td>
<td>15.36 o</td>
</tr>
<tr>
<td>A<7</td>
<td>126.6 6</td>
<td>126.6 6</td>
<td>69.3 3</td>
<td>8.0 V</td>
</tr>
<tr>
<td>A<8</td>
<td>140.0 gh</td>
<td>143.7 Fg</td>
<td>74.7 77.7</td>
<td>10.5 t</td>
</tr>
<tr>
<td>C<6</td>
<td>135.0 h-k</td>
<td>158.3 c</td>
<td>82.3 ef</td>
<td>21.86 Fd</td>
</tr>
<tr>
<td>C<7</td>
<td>124.0 no</td>
<td>138.3 h-i</td>
<td>69.0 j-k</td>
<td>23.28 bc</td>
</tr>
<tr>
<td>C<8</td>
<td>137.6 hi</td>
<td>158.3 c</td>
<td>79.0 f-j</td>
<td>14.0 Di</td>
</tr>
<tr>
<td>Mean</td>
<td>137.4 139.9</td>
<td>137.4 139.9</td>
<td>74.6 80.5</td>
<td>17.1 17.7</td>
</tr>
<tr>
<td>C.V</td>
<td>1.71 1.89</td>
<td>1.71 1.89</td>
<td>3.3 2.67</td>
<td>1.95 3.32</td>
</tr>
</tbody>
</table>

Continued ……
Table (2): Mean performance and statistical significance for studied characters in genotypes (testers, parents and hybrids) under two levels of nitrogen.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Plant height (cm)</th>
<th>Ear height (cm)</th>
<th>100 grain weight (g)</th>
<th>No. of rows / ear</th>
<th>Ear length (cm)</th>
<th>Grain yield (plant/gm)</th>
<th>N. in grain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>N2</td>
<td>N1</td>
<td>N2</td>
<td>N1</td>
<td>N2</td>
<td>N1</td>
<td>N2</td>
</tr>
<tr>
<td>B×1</td>
<td>132.33 j-l</td>
<td>139.00 g-i</td>
<td>76.33 j</td>
<td>78.00</td>
<td>16.16 no</td>
<td>17.20 j</td>
<td>2.99 e-g</td>
</tr>
<tr>
<td>B×2</td>
<td>149.66 de</td>
<td>150.00 de</td>
<td>75.33 j</td>
<td>82.33</td>
<td>9.66 y</td>
<td>10.96 rs</td>
<td>2.49 b</td>
</tr>
<tr>
<td>B×3</td>
<td>135.0 i-k</td>
<td>143.3 fg</td>
<td>85.00 c-e</td>
<td>88.3</td>
<td>12.06 r</td>
<td>16.20 k</td>
<td>2.41 c-i</td>
</tr>
<tr>
<td>B×4</td>
<td>142.3 fg</td>
<td>146.66 ef</td>
<td>92.30 ab</td>
<td>97.30</td>
<td>24.43 b</td>
<td>24.15 b</td>
<td>2.59 c-i</td>
</tr>
<tr>
<td>B×5</td>
<td>157.6 b</td>
<td>160.3 bc</td>
<td>82.60 e-f</td>
<td>88.30</td>
<td>15.06 h-o</td>
<td>17.50 j</td>
<td>3.11 f</td>
</tr>
<tr>
<td>B×6</td>
<td>137.3 hi</td>
<td>146.00 ef</td>
<td>64.00 ml</td>
<td>69.3</td>
<td>20.88 q</td>
<td>25.16 q</td>
<td>3.65 f</td>
</tr>
<tr>
<td>B×7</td>
<td>146.0 ef</td>
<td>156.6 cd</td>
<td>62.30 m</td>
<td>64.3 m</td>
<td>17.25 k</td>
<td>19.50 hi</td>
<td>3.79 f-g</td>
</tr>
<tr>
<td>B×8</td>
<td>136.0 h-k</td>
<td>143.3 fg</td>
<td>83.30 def</td>
<td>87.3</td>
<td>19.21 i</td>
<td>21.55 ef</td>
<td>4.05 d-k</td>
</tr>
<tr>
<td>C×1</td>
<td>140.0 gh</td>
<td>153.3 kd</td>
<td>52.30 o</td>
<td>90.0</td>
<td>15.58 kl</td>
<td>17.80 ef</td>
<td>4.45 d-h</td>
</tr>
<tr>
<td>C×2</td>
<td>146.6 ef</td>
<td>153.0 cd</td>
<td>51.60 o</td>
<td>87.0</td>
<td>19.18 i</td>
<td>19.41 hi</td>
<td>4.38 b-f</td>
</tr>
<tr>
<td>C×3</td>
<td>155.0 be</td>
<td>145.0 ef</td>
<td>87.30 f</td>
<td>95.0</td>
<td>14.70 po</td>
<td>19.68 hi</td>
<td>2.24 f-e</td>
</tr>
<tr>
<td>C×4</td>
<td>145.0 ef</td>
<td>158.3 cd</td>
<td>87.00 d</td>
<td>82.3 m</td>
<td>15.86 m</td>
<td>20.50 gh</td>
<td>2.36 f-e</td>
</tr>
<tr>
<td>C×5</td>
<td>164.0 a</td>
<td>164.0 a</td>
<td>79.30 a</td>
<td>93.0</td>
<td>13.76 c</td>
<td>21.38 ef</td>
<td>3.35 m</td>
</tr>
<tr>
<td>C×6</td>
<td>135.0 h-k</td>
<td>158.3 cd</td>
<td>82.30 ef</td>
<td>88.3</td>
<td>21.86 c</td>
<td>26.66 d-f</td>
<td>3.55 e-l</td>
</tr>
<tr>
<td>C×7</td>
<td>124.0 no</td>
<td>138.3 hi</td>
<td>69.00 k</td>
<td>69.3</td>
<td>23.28 c</td>
<td>23.64 c</td>
<td>3.44 Lm</td>
</tr>
<tr>
<td>C×8</td>
<td>137.6 h-i</td>
<td>138.5 c</td>
<td>79.00 f</td>
<td>97.3</td>
<td>14.76 c</td>
<td>15.33 d-f</td>
<td>2.36 c-g</td>
</tr>
<tr>
<td>Mean</td>
<td>137.4 138.6</td>
<td>74.6 80.47</td>
<td>17.1 17.69</td>
<td>15.39</td>
<td>16.05</td>
<td>16.41</td>
<td>2.51 4.07</td>
</tr>
<tr>
<td>C.V</td>
<td>1.71</td>
<td>1.89</td>
<td>3.26</td>
<td>2.67</td>
<td>1.95 3.32</td>
<td>3.31 5.40</td>
<td>5.35 9.25</td>
</tr>
</tbody>
</table>

Table (3): Estimation of GCA effects of testers and inbred lines for studied characters under two levels of Nitrogen.

<table>
<thead>
<tr>
<th>Inbred tester</th>
<th>Plant height (cm)</th>
<th>Ear height (cm)</th>
<th>100 grain weight (g)</th>
<th>No. of rows / ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>N2</td>
<td>N1</td>
<td>N2</td>
<td>N1</td>
</tr>
<tr>
<td>A</td>
<td>-6.65 j-l</td>
<td>0.9 j</td>
<td>-0.04</td>
<td>-2.95</td>
</tr>
<tr>
<td>B</td>
<td>1.38</td>
<td>0.68</td>
<td>2.08</td>
<td>2.44</td>
</tr>
<tr>
<td>C</td>
<td>5.26</td>
<td>-1.77</td>
<td>2.08</td>
<td>2.44</td>
</tr>
<tr>
<td>SE(gi)</td>
<td>1.92</td>
<td>2.03</td>
<td>1.76</td>
<td>0.27</td>
</tr>
<tr>
<td>1</td>
<td>-3.80</td>
<td>-8.54</td>
<td>-0.29</td>
<td>0.49</td>
</tr>
<tr>
<td>2</td>
<td>11.08</td>
<td>-8.76</td>
<td>0.59</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>-3.47</td>
<td>8.34</td>
<td>6.59</td>
<td>-3.87</td>
</tr>
<tr>
<td>4</td>
<td>0.62</td>
<td>-5.15</td>
<td>8.15</td>
<td>1.27</td>
</tr>
<tr>
<td>5</td>
<td>12.63</td>
<td>8.01</td>
<td>-0.40</td>
<td>0.24</td>
</tr>
<tr>
<td>6</td>
<td>-5.80</td>
<td>1.29</td>
<td>-1.20</td>
<td>-1.95</td>
</tr>
<tr>
<td>7</td>
<td>-8.47</td>
<td>-7.04</td>
<td>-11.76</td>
<td>-16.06</td>
</tr>
<tr>
<td>8</td>
<td>-2.80</td>
<td>2.01</td>
<td>3.37</td>
<td>-1.39</td>
</tr>
<tr>
<td>SE (gi-gi)</td>
<td>1.92</td>
<td>2.16</td>
<td>1.76</td>
<td>0.27</td>
</tr>
<tr>
<td>Inbred and tester</td>
<td>Ear length (cm)</td>
<td>Grain yield / plant (g)</td>
<td>N. in grain (g)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N₁</td>
<td>N₂</td>
<td>N₁</td>
<td>N₂</td>
</tr>
<tr>
<td>A</td>
<td>-1.55</td>
<td>-2.26</td>
<td>-18.73</td>
<td>-23.92</td>
</tr>
<tr>
<td>B</td>
<td>0.04</td>
<td>0.25</td>
<td>-1.21</td>
<td>0.87</td>
</tr>
<tr>
<td>C</td>
<td>1.50</td>
<td>2.00</td>
<td>19.95</td>
<td>23.05</td>
</tr>
<tr>
<td>SE (gi)</td>
<td>0.58</td>
<td>0.91</td>
<td>3.21</td>
<td>8.93</td>
</tr>
<tr>
<td>1</td>
<td>-1.08</td>
<td>1.17</td>
<td>-11.37</td>
<td>3.34</td>
</tr>
<tr>
<td>2</td>
<td>-0.92</td>
<td>0.45</td>
<td>-26.71</td>
<td>-2.68</td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>-0.71</td>
<td>-0.58</td>
<td>-22.62</td>
</tr>
<tr>
<td>4</td>
<td>-0.95</td>
<td>-0.80</td>
<td>-15.80</td>
<td>-24.77</td>
</tr>
<tr>
<td>5</td>
<td>0.77</td>
<td>-0.43</td>
<td>17.81</td>
<td>8.17</td>
</tr>
<tr>
<td>6</td>
<td>1.07</td>
<td>0.01</td>
<td>28.20</td>
<td>31.16</td>
</tr>
<tr>
<td>7</td>
<td>1.24</td>
<td>1.31</td>
<td>9.06</td>
<td>0.16</td>
</tr>
<tr>
<td>8</td>
<td>-0.36</td>
<td>-0.99</td>
<td>-0.60</td>
<td>6.78</td>
</tr>
<tr>
<td>SE (gi – gi)</td>
<td>0.58</td>
<td>0.91</td>
<td>3.21</td>
<td>8.93</td>
</tr>
</tbody>
</table>

Table (4): Estimated of S.C.A effect of crosses for studied characters under two nitrogen levels.

<table>
<thead>
<tr>
<th>Hybrids</th>
<th>Plant height (cm)</th>
<th>Ear height (cm)</th>
<th>100 grain weight (g)</th>
<th>No. of rows / ear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N₁</td>
<td>N₂</td>
<td>N₁</td>
<td>N₂</td>
</tr>
<tr>
<td>A × 1</td>
<td>8.09</td>
<td>8.77</td>
<td>7.12</td>
<td>-0.62</td>
</tr>
<tr>
<td>A × 2</td>
<td>7.20</td>
<td>17.88</td>
<td>8.34</td>
<td>-0.18</td>
</tr>
<tr>
<td>A × 3</td>
<td>-8.90</td>
<td>-8.77</td>
<td>-2.76</td>
<td>-2.18</td>
</tr>
<tr>
<td>A × 4</td>
<td>-11.34</td>
<td>-3.22</td>
<td>-2.65</td>
<td>4.59</td>
</tr>
<tr>
<td>A × 5</td>
<td>-8.34</td>
<td>-6.77</td>
<td>-6.76</td>
<td>-0.51</td>
</tr>
<tr>
<td>A × 6</td>
<td>3.43</td>
<td>-3.00</td>
<td>4.12</td>
<td>6.37</td>
</tr>
<tr>
<td>A × 7</td>
<td>1.09</td>
<td>-6.33</td>
<td>-1.98</td>
<td>2.15</td>
</tr>
<tr>
<td>A × 8</td>
<td>8.76</td>
<td>1.44</td>
<td>-5.73</td>
<td>-9.62</td>
</tr>
<tr>
<td>B × 1</td>
<td>-5.94</td>
<td>-9.80</td>
<td>7.20</td>
<td>3.62</td>
</tr>
<tr>
<td>B × 2</td>
<td>-3.16</td>
<td>-5.69</td>
<td>6.43</td>
<td>0.18</td>
</tr>
<tr>
<td>B × 3</td>
<td>-3.61</td>
<td>5.30</td>
<td>-1.01</td>
<td>-0.18</td>
</tr>
<tr>
<td>B × 4</td>
<td>-0.38</td>
<td>4.19</td>
<td>2.76</td>
<td>7.26</td>
</tr>
<tr>
<td>B × 5</td>
<td>2.94</td>
<td>3.30</td>
<td>-3.01</td>
<td>6.81</td>
</tr>
<tr>
<td>B × 6</td>
<td>1.05</td>
<td>-2.91</td>
<td>-12.45</td>
<td>-10.62</td>
</tr>
<tr>
<td>B × 7</td>
<td>12.28</td>
<td>12.08</td>
<td>-3.56</td>
<td>-1.51</td>
</tr>
<tr>
<td>B × 8</td>
<td>-3.27</td>
<td>-6.47</td>
<td>3.65</td>
<td>2.04</td>
</tr>
<tr>
<td>C × 1</td>
<td>-2.15</td>
<td>-1.02</td>
<td>-14.33</td>
<td>4.25</td>
</tr>
<tr>
<td>C × 2</td>
<td>-4.04</td>
<td>-12.19</td>
<td>-14.77</td>
<td>-0.36</td>
</tr>
<tr>
<td>C × 3</td>
<td>12.51</td>
<td>3.47</td>
<td>3.77</td>
<td>2.36</td>
</tr>
<tr>
<td>C × 4</td>
<td>11.73</td>
<td>-0.97</td>
<td>-0.11</td>
<td>-11.86</td>
</tr>
<tr>
<td>C × 5</td>
<td>5.40</td>
<td>3.47</td>
<td>9.77</td>
<td>-6.30</td>
</tr>
<tr>
<td>C × 6</td>
<td>-4.48</td>
<td>5.91</td>
<td>8.33</td>
<td>4.25</td>
</tr>
<tr>
<td>C × 7</td>
<td>-13.48</td>
<td>-5.75</td>
<td>5.55</td>
<td>-0.63</td>
</tr>
<tr>
<td>C × 8</td>
<td>-5.48</td>
<td>5.02</td>
<td>1.77</td>
<td>7.58</td>
</tr>
<tr>
<td>SE (sij)</td>
<td>1.92</td>
<td>2.16</td>
<td>2.03</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Continued ……..
Table (4): Estimated of S.C.A effect of crosses for studied characters under two nitrogen levels.

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Ear length (cm)</th>
<th>Grain yield / plant (g)</th>
<th>N. in grain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N₁</td>
<td>N₂</td>
<td>N₁</td>
</tr>
<tr>
<td>A × 1</td>
<td>3.27</td>
<td>3.43</td>
<td>41.30</td>
</tr>
<tr>
<td>A × 2</td>
<td>1.77</td>
<td>3.15</td>
<td>37.24</td>
</tr>
<tr>
<td>A × 3</td>
<td>1.05</td>
<td>-1.01</td>
<td>-9.72</td>
</tr>
<tr>
<td>A × 4</td>
<td>0.47</td>
<td>0.15</td>
<td>-4.87</td>
</tr>
<tr>
<td>A × 5</td>
<td>-2.08</td>
<td>-2.29</td>
<td>-18.48</td>
</tr>
<tr>
<td>A × 6</td>
<td>-0.38</td>
<td>-0.62</td>
<td>-17.40</td>
</tr>
<tr>
<td>A × 7</td>
<td>-2.38</td>
<td>-2.40</td>
<td>-41.30</td>
</tr>
<tr>
<td>A × 8</td>
<td>0.38</td>
<td>-0.40</td>
<td>13.26</td>
</tr>
<tr>
<td>B × 1</td>
<td>-1.49</td>
<td>-2.92</td>
<td>-24.35</td>
</tr>
<tr>
<td>B × 2</td>
<td>-0.15</td>
<td>-3.36</td>
<td>-9.00</td>
</tr>
<tr>
<td>B × 3</td>
<td>-1.49</td>
<td>-0.53</td>
<td>-53.84</td>
</tr>
<tr>
<td>B × 4</td>
<td>-0.22</td>
<td>-1.03</td>
<td>-9.75</td>
</tr>
<tr>
<td>B × 5</td>
<td>0.06</td>
<td>2.18</td>
<td>-4.27</td>
</tr>
<tr>
<td>B × 6</td>
<td>-0.49</td>
<td>0.35</td>
<td>17.80</td>
</tr>
<tr>
<td>B × 7</td>
<td>2.17</td>
<td>2.40</td>
<td>37.93</td>
</tr>
<tr>
<td>B × 8</td>
<td>1.61</td>
<td>2.90</td>
<td>45.48</td>
</tr>
<tr>
<td>C × 1</td>
<td>-1.78</td>
<td>-0.50</td>
<td>-16.94</td>
</tr>
<tr>
<td>C × 2</td>
<td>-1.61</td>
<td>0.21</td>
<td>-28.23</td>
</tr>
<tr>
<td>C × 3</td>
<td>2.54</td>
<td>1.54</td>
<td>63.57</td>
</tr>
<tr>
<td>C × 4</td>
<td>-0.25</td>
<td>0.88</td>
<td>14.63</td>
</tr>
<tr>
<td>C × 5</td>
<td>2.02</td>
<td>0.10</td>
<td>22.76</td>
</tr>
<tr>
<td>C × 6</td>
<td>0.88</td>
<td>0.27</td>
<td>-0.39</td>
</tr>
<tr>
<td>C × 7</td>
<td>0.21</td>
<td>-0.01</td>
<td>3.37</td>
</tr>
<tr>
<td>C × 8</td>
<td>-2.00</td>
<td>-2.50</td>
<td>-58.74</td>
</tr>
<tr>
<td>SE (sij)</td>
<td>0.58</td>
<td>0.91</td>
<td>3.21</td>
</tr>
</tbody>
</table>

Table (5): Estimation of genetic parameters for studied characters under two nitrogen levels.

<table>
<thead>
<tr>
<th>Variance</th>
<th>Plant height</th>
<th>Ear height</th>
<th>100 grain weight</th>
<th>No. of rows / ear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N₁</td>
<td>N₂</td>
<td>N₁</td>
<td>N₂</td>
</tr>
<tr>
<td>θ²σA</td>
<td>96.50</td>
<td>77.35</td>
<td>82.78</td>
<td>58.40</td>
</tr>
<tr>
<td>SEA</td>
<td>27.30±22.26±</td>
<td>20.02±14.43±</td>
<td>3.62±2.49±</td>
<td>1.00±1.57±</td>
</tr>
<tr>
<td>θ²σD</td>
<td>90.58</td>
<td>85.60</td>
<td>80.85</td>
<td>46.77</td>
</tr>
<tr>
<td>SED</td>
<td>32.68±31.10±</td>
<td>29.31±17.08±</td>
<td>6.64±6.81±</td>
<td>0.93±1.60±</td>
</tr>
<tr>
<td>θ²σE</td>
<td>5.57</td>
<td>7.08</td>
<td>6.19</td>
<td>4.65</td>
</tr>
<tr>
<td>å</td>
<td>1.37</td>
<td>1.48</td>
<td>1.39</td>
<td>1.26</td>
</tr>
<tr>
<td>h.n.s</td>
<td>0.50</td>
<td>0.45</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>h.b.s</td>
<td>0.97</td>
<td>0.95</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>GA</td>
<td>12.23</td>
<td>10.44</td>
<td>11.18</td>
<td>9.80</td>
</tr>
<tr>
<td>GA% of</td>
<td>8.90</td>
<td>7.46</td>
<td>14.97</td>
<td>12.18</td>
</tr>
<tr>
<td>Mean</td>
<td>137.45</td>
<td>139.86</td>
<td>74.67</td>
<td>80.47</td>
</tr>
</tbody>
</table>
Table (5): Estimation of genetic parameters for studied characters under two nitrogen levels.

<table>
<thead>
<tr>
<th>Variance</th>
<th>Ear length(cm)</th>
<th>Grain yield / plant(g)</th>
<th>N. in grain(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
<td>N2</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N2</td>
</tr>
</tbody>
</table>

σ²A = Additive genetic variance; **σ²D** = Dominance genetic variance; **σ²E** = Environment variance; **ê** = Average degree of dominance; **h. n. s** = heritability narrow sense; **h.b.s** = heritability in broad sense; **GA** = Genetic advance.

Table (6): Heterosis relative to mid – parent for studied characters under two level of nitrogen.

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Plant height (cm)</th>
<th>Ear height (cm)</th>
<th>100 grain weight (g)</th>
<th>No. of rows / ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>A×1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A×8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B×8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C×7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ISSN: 2224-9796 (Online)
ISSN: 1815-316X (Print)
مجلة زراعة الرافدين
مجلة زراعة الرافدني
Table 6: Heterosis relative to mid – parent for studied characters under two level of nitrogen.

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Ear length (cm)</th>
<th>Grain yield / plant (g)</th>
<th>N. in grain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N<sub>1</sub></td>
<td>N<sub>2</sub></td>
<td>N<sub>1</sub></td>
</tr>
<tr>
<td>A×1</td>
<td>0.58</td>
<td>3.83</td>
<td>67.74**</td>
</tr>
<tr>
<td>A×2</td>
<td>-0.33</td>
<td>2.58*</td>
<td>37.67**</td>
</tr>
<tr>
<td>A×3</td>
<td>-4.41**</td>
<td>-4.41**</td>
<td>-0.80</td>
</tr>
<tr>
<td>A×4</td>
<td>-1.08</td>
<td>-0.91</td>
<td>-14.12</td>
</tr>
<tr>
<td>A×5</td>
<td>-2.41</td>
<td>-3.41**</td>
<td>15.56</td>
</tr>
<tr>
<td>A×6</td>
<td>-0.58</td>
<td>0.70</td>
<td>49.58**</td>
</tr>
<tr>
<td>A×7</td>
<td>-2.33**</td>
<td>-2.83**</td>
<td>-2.41</td>
</tr>
<tr>
<td>A×8</td>
<td>-0.91</td>
<td>-2.10</td>
<td>55.12**</td>
</tr>
<tr>
<td>B×1</td>
<td>-2.25**</td>
<td>-0.25</td>
<td>2.90</td>
</tr>
<tr>
<td>B×2</td>
<td>-0.33</td>
<td>-1.66</td>
<td>6.71</td>
</tr>
<tr>
<td>B×3</td>
<td>-2.91*</td>
<td>-1.66</td>
<td>-28.26</td>
</tr>
<tr>
<td>B×4</td>
<td>0.15</td>
<td>0.16</td>
<td>39.98**</td>
</tr>
<tr>
<td>B×5</td>
<td>1.66**</td>
<td>3.33*</td>
<td>77.90**</td>
</tr>
<tr>
<td>B×6</td>
<td>1.25</td>
<td>3.95**</td>
<td>111.33**</td>
</tr>
<tr>
<td>B×7</td>
<td>4.16**</td>
<td>4.25**</td>
<td>84.81**</td>
</tr>
<tr>
<td>B×8</td>
<td>2.25*</td>
<td>3.48**</td>
<td>96.48**</td>
</tr>
<tr>
<td>C×1</td>
<td>-2.33</td>
<td>5.08</td>
<td>88.76</td>
</tr>
<tr>
<td>C×2</td>
<td>-1.58</td>
<td>4.83**</td>
<td>68.52**</td>
</tr>
<tr>
<td>C×3</td>
<td>1.33</td>
<td>3.33**</td>
<td>56.88</td>
</tr>
<tr>
<td>C×4</td>
<td>0.33</td>
<td>5.00**</td>
<td>29.48**</td>
</tr>
<tr>
<td>C×5</td>
<td>3.83**</td>
<td>4.16**</td>
<td>44.72**</td>
</tr>
<tr>
<td>C×6</td>
<td>2.83**</td>
<td>6.79</td>
<td>87.36</td>
</tr>
<tr>
<td>C×7</td>
<td>2.41**</td>
<td>4.75**</td>
<td>70.83**</td>
</tr>
<tr>
<td>C×8</td>
<td>-1.16</td>
<td>0.98</td>
<td>31.38**</td>
</tr>
</tbody>
</table>

*, ** significant difference at level 0.05 and 0.01, respectively.

الخلاصة

طبقت التجربة في حقل كلية الزراعة/ جامعة دهوك للموسم المالي 2010. انتهيت احدى عشر سلالة من النباتات الصفراء، ثمانیة منها استخدمت امهات وهي (A×1، A×2، A×3، A×4، A×5، B×1، B×2، B×3، B×4، B×5)، والباقي استخدمت كفايحة (A×6، A×7، A×8، C×1، C×2، C×3، C×4، C×5، C×6، C×7، C×8).

النتائج:

- اظهرت النتائج قوة هجين بالانجاح الموجب لمعظم صفات الهجين تحت المستويين من النايتروجين وكانت افضل هجين هما نبات الحبوب، هما الهجين (A×2×B×1، B×2×C×1)، كما اظهرت قابلية انتلاف عامة ونسبة التوريث لحافلات الحبوب. أما قابلية التوريث بالمعنى الولاع، فكانت
REFERENCES

21

